In the chapter of quantum harmonic oscillator, we use the Hermite polynomial a lot. And the fourier transformation of Hermite polynomial (in wavenumber space) gives(adsbygoogle = window.adsbygoogle || []).push({});

[tex]\mathcal{F} \left\{ \exp (-x^2/2) H_n(x) \right\} = (-i)^n \exp (-k^2/2) H_n(k)[/tex]

Now I need to find the similar result in terms of momentum p, I know the relation between wavenumber and momentum is

[tex]p = \hbar k[/tex]

But I still cannot transform above result to that written in terms of p. Any clue?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Hermite polynomial and transformation

**Physics Forums | Science Articles, Homework Help, Discussion**