Hilbert, Banach and Fourier theory

center o bass
Messages
545
Reaction score
2
Hi. I want to get a quick overview of the theory of Hilbert spaces in order to understand Fourier series and transforms at a higher level. I have a couple of questions I hoped someone could help me with.

- First of all: Can anyone recommend any literature, notes etc.. which go through the sufficient results of Hilbert and Banach spaces (in a quick way) with the aim to understand Fourier theory?

-What is the virtue of a Hilbert space being defined as a Banach space, i.e. a normed linear space in which any Cauchy sequence of elements converge to an element in the space?

- How do I prove that ##L^2 (S^1)## where ##S^1## is the circle is a Banach space with the standard hilbert space norm

$$\langle f, g\rangle = \int_{S^1} f^*(x) g(x) dx?$$
 
Physics news on Phys.org
center o bass said:
Hi. I want to get a quick overview of the theory of Hilbert spaces in order to understand Fourier series and transforms at a higher level. I have a couple of questions I hoped someone could help me with.

- First of all: Can anyone recommend any literature, notes etc.. which go through the sufficient results of Hilbert and Banach spaces (in a quick way) with the aim to understand Fourier theory?

-What is the virtue of a Hilbert space being defined as a Banach space, i.e. a normed linear space in which any Cauchy sequence of elements converge to an element in the space?

- How do I prove that ##L^2 (S^1)## where ##S^1## is the circle is a Banach space with the standard hilbert space norm

$$\langle f, g\rangle = \int_{S^1} f^*(x) g(x) dx?$$

Last two questions:

Since a Hilbert space is a Banach space, theorems about Banach spaces automatically apply to Hilbert space.

For the last question, you need to prove completeness in the norm.
 
mathman said:
Last two questions:

Since a Hilbert space is a Banach space, theorems about Banach spaces automatically apply to Hilbert space.

For the last question, you need to prove completeness in the norm.

What are the most important theorems we care about in Banach spaces?

For example in QM square integrability is a very important property. What theorems guarantee square integrability?
 
Banach spaces theorems are about Banach spaces. Your question (guarantee square integrability) is something that has to be shown to justify calling a set a Hilbert space. Once that has been shown, then you can use Hilbert space theory and Banach space theory to ascertain certain properties.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top