Hilbert-Schmidt Norm: Calculation & Solution

  • Thread starter Thread starter dirk_mec1
  • Start date Start date
  • Tags Tags
    Hilbert Norm
dirk_mec1
Messages
755
Reaction score
13
Last edited by a moderator:
Physics news on Phys.org
If the norm of blah is zero, then blah is zero. Is blah zero in this case?
 
morphism said:
If the norm of blah is zero, then blah is zero. Is blah zero in this case?

You're right something is wrong.

But is the integral set up with the correct boundaries?
 
Ok presuming the boundaries are ok I end up with:

||A||_{HS} = \frac{2 (b-a)^n}{((n-1)!)^2 (2n-1)(2n)}

Is this correct?
 
Did you remember to take the square root?
 
Last edited:
You might want to include some characteristic function like \chi_{\{s\leq t\}} in your kernel function.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top