Hilbert Space: f(x) = x^n on Interval (0,1)

Gumbercules
Messages
11
Reaction score
0

Homework Statement


for what range of n is the function f(x) = x^n in Hilbert space, on the interval (0,1)? assume n is real.


Homework Equations



functions in Hilbert space are square integrable from -inf to inf

The Attempt at a Solution


I am having trouble with the language of the problem and the concept of the Hilbert space in general. Does 'on the interval (0,1)' mean that the square integrable function only has to converge for limits of integration between 0 and 1?
 
Physics news on Phys.org
Yes they are asking you for what n the following integral converges.

<br /> \int_0^1 |f(x)|^2 dx &lt;\infty<br />
 
Thanks!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top