Insights Hilbert Spaces And Their Relatives - Operators

fresh_42
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
2024 Award
Messages
20,627
Reaction score
27,759

Operators. The Maze Of Definitions.​

We will use the conventions of part I (Basics), which are ##\mathbb{F}\in \{\mathbb{R},\mathbb{C}\}##, ##z \mapsto \overline{z}## for the complex conjugate, ##\tau## for transposing matrices or vectors, which we interpret as written in a column if given a basis, and ##\dagger## for the combination of conjugation and transposition, the adjoint matrices. ##\mathcal{H},\mathcal{H}_1,\mathcal{H}_2,\ldots## indicate Hilbert spaces. Their dual spaces are noted by ##\mathcal{H}^*##, the orthogonal complements of a subspace ##U## as ##U^{\perp}##. Our inner products will be sesquilinear in the first and linear in the second argument. Integrability usually refers to the Lebesgue measure.

Continue reading ...
 
Last edited:
  • Like
Likes FactChecker and Greg Bernhardt
Physics news on Phys.org
jedishrfu said:
Great article @fresh_42 !
Thanks, but I find it a bit boring. So many different aspects only to describe a linear function. I hope that at least the list at the end is of some help to look up definitions in a short time. I hope the next part will be a bit more exciting, i.e. more examples than theory. However, one needs the vocabulary first.
 
Nice work, fresh! (Notwithstanding that you find it boring!)
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top