#### SeM

L = (d/dx +ia) where a is some constant. Applying this on x, gives a result in the subspace

**C**and

**R**. Can I safely conclude that the operator L can be given as:

\begin{equation}

L: \mathcal{H} \rightarrow \mathcal{H}

\end{equation}

where H is Hilbert space, with subspaces

**C**and

**R**?