ELESSAR TELKONT
- 39
- 0
Homework Statement
Let 1\leq p,q that satisfy p+q=pq and x\in\ell_{p},\, y\in\ell_{q}. Then
<br /> \begin{align}<br /> \sum_{k=1}^{\infty}\left\vert x_{k}y_{k}\right\vert\leq\left(\sum_{k=1}^{\infty}\left\vert x_{k}\right\vert^{p}\right)^{\frac{1}{p}}\left( \sum_{k=1}^{\infty}\left\vert y_{k}\right\vert^{q}\right)^{\frac{1}{q}}<br /> \end{align}<br />
Homework Equations
The Hölder's inequality for \mathbb{R}^{n} and convergence conditions of sequences in \ell_{r}, that is:
<br /> \begin{align}<br /> \sum_{k=1}^{\infty}\left\vert x_{k}\right\vert^{r}<\infty<br /> \end{align}<br />
The Attempt at a Solution
I can prove the result from the inequality for \mathbb{R}^{n}, but I have a missing part that I don't get to prove, that is: proving that
<br /> \begin{align}<br /> \sum_{k=1}^{\infty}\left\vert x_{k}y_{k}\right\vert<br /> \end{align}<br />
converges given convergence conditions over x, y. Could you give me ideas! This is not a homework task. I'm reviewing some analysis topics.