Why Does the Constant 't' Appear in the Derivative of a Homogeneous Function?

AI Thread Summary
The discussion centers on the appearance of the constant 't' in the derivative of a homogeneous function, specifically when differentiating the left-hand side of the equation ƒ(tx1, tx2, …, tn) with respect to x1. The use of the chain rule is highlighted, where the derivative of the function is multiplied by the derivative of the inner function, resulting in the factor 't'. Confusion arises from the notation used, which seems to imply differentiation with respect to x1 rather than the transformed variable tx1. Participants emphasize the importance of clear notation and understanding the chain rule to grasp the concept fully. The conversation also touches on the challenges of writing mathematical expressions neatly and efficiently.
Sidney
Messages
12
Reaction score
0
I've been reading a book on economics and they defined a homogeneous function as: ƒ(x1,x2,…,xn) such that
ƒ(tx1,tx2,…,txn)=tkƒ(x1,x2,…,xn) ..totally understandable.. they further explained that a direct result from this is that the partial derivative of such a function will be homogeneous to the degree k-1.They proved this by simply differentiating both sides of the equation. My problem arises when they differentiate the left hand side (with respect to the first argument as an arbitrary choice). They say the partial differential(of the LHS wrt x1) is:

(∂ƒ(tx1,tx2,…,txn)/∂x1).t

my question is where does the t come from.. ..please bear with me
 
Mathematics news on Phys.org
They used the chain rule. When you take a derivative of

f(g(x)) with respect to x, you first take the derivative of f, but then you need to multiply by the derivative of g.

\frac{d}{dx}f(g(x))=f'(g(x))\cdot g'(x)

So

\frac{d}{dx}f(tx)=f'(tx)\cdot \frac{d}{dx}tx = f'(tx)\cdot t

assuming t is independent of x (constant).
 
thank you :) I don't know why it seems so obvious now ..I did think of the t as being a result of the chain rule but for some reason the way they wrote it down made no sense to me and had me stuck...I think it's because they wrote (∂ƒ(tx1,tx2,…,txn)/∂x1) which to me means with respect to x( i.e. ∂x1) and not with respect to the change in the intermediate function(tx) and so it came across as meaning the complete derivative of ƒ1 encompassing all the intermediate processes..

the way you have your functions written down is so neat. If you don't mind me asking what did you use because the way I'm doing it takes forever, is very messy and I can't write in fraction form
 
Last edited:
Sidney said:
thank you :) I don't know why it seems so obvious now ..I did think of the t as being a result of the chain rule but for some reason the way they wrote it down made no sense to me and had me stuck...I think it's because they wrote (∂ƒ(tx1,tx2,…,txn)/∂x1) which to me means with respect to x( i.e. ∂x1) and not with respect to the change in the intermediate function(tx) and so it came across as meaning the complete derivative of ƒ1 encompassing all the intermediate processes..

Things often become clear again when it's explained in simple terms :)

Sidney said:
the way you have your functions written down is so neat. If you don't mind me asking what did you use because the way I'm doing it takes forever, is very messy and I can't write in fraction form

Check out this page:
https://www.physicsforums.com/threads/introducing-latex-math-typesetting.8997/

And what you can also do to help speed up the learning process is to quote a post and observe what the poster had written in their latex.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top