Hope this helps!Solving Simultaneous Equations with Square Roots

benf.stokes
Messages
67
Reaction score
0
Hi

How do you solve this equations analyticaly without solving a 4th degree polynomial
sqrt(x)+y=11; x+sqrt(y)=7

Thanks
 
Mathematics news on Phys.org
I'll give a general outline on how to solve this:

First of all, use new variables. a = sqrt(x) and b = sqrt(y). That will remove those ugly square roots for now.

Then, add the 2 equations and form a new equation a + a² + b + b² = 18. In this equation, 18 can be split up into 2 unknown values c and d to form 2 quadratic equations. Of these 2 values, you only need to know 1 to calculate the other, that is d = 18 - c. The roots of these 2 quadratic equations can be written in terms of these 2 values. Keeping in mind that the solutions can only be positive, that should lead you to the right answer
 
Last edited:
I may be misunderstanding but you seem to be saying that if you have a+ a^2+ b+ b^2= 18= c+ d then you must have a+ a^2= c and b+ b^2= d. That is not true.
 
Last edited by a moderator:
HallsofIvy said:
I may be misunderstanding but you seem to be saying that is you have a+ a^2+ b+ b^2= 18= c+ d then you must have a+ a^2= c and b+ b^2= d. That is not true.

Do u want to explain why this is not true? If I define c as being a+a², and d as being b+b², then a + a² + b + b² = c + d = 18

Edit: nvm, you probably did misunderstand me^^
 
Kyouran said:
I'll give a general outline on how to solve this:

First of all, use new variables. a = sqrt(x) and b = sqrt(y). That will remove those ugly square roots for now.

Then, add the 2 equations and form a new equation a + a² + b + b² = 18. In this equation, 18 can be split up into 2 unknown values c and d to form 2 quadratic equations. Of these 2 values, you only need to know 1 to calculate the other, that is d = 18 - c. The roots of these 2 quadratic equations can be written in terms of these 2 values. Keeping in mind that the solutions can only be positive, that should lead you to the right answer

can you plees put full steps for this equation plees
 
Hello I'm 14 years old so i don't know what a 4th degree polynomial is... however i agree with the guy named Kyouran. This is how i did it:

sqrt(x) + y = 11 ...(1)
sqrt(y) + x = 7 ...(2)

Let sqrt(x) = a, and sqrt(y) = b.

The eqs will then be:
a + b^2 = 11 ...(3)
b + a^2 = 7 ...(4)

Add them together and you get:

a + a^2 + b + b^2 = 18

The way i solved it is just by doing guess and check. This only takes common sense:

I first tried a = 2 and b = 3 which when substituted into the equation equals 18:

2 + 2^2 + 3 + 3^2 = 18

However when subbing them into eqs 3 and 4, they weren't correct:

So i then switched the values around saying a = 3, and b = 2 which when subbed into eqs 3 and 4 were correct!

And so, as said before...

Since I let sqrt(x) = a, and the sqrt(y) = b:

sqrt (x) = 3
and so therefore x = 9

sqrt (y) = 2
and so therefore y = 4

therefore x = 9, y = 4 ;)

Now you will find, that when subbing these x and y values into your original eqs (1) and (2), they are sure to be correct!
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top