EngWiPy
- 1,361
- 61
Hi,
I have the following equation:
\gamma=\frac{1}{\frac{1}{N}\sum_{n=1}^N|\lambda_n|^{-2}}
where lambdas are the eigenvalues of an N-by-N circulant matrix A.
I used two properties to bound the above equation:
\frac{1}{N}\sum_{n=1}^N|\lambda_n|^{-2}\geq\left(\prod_{n=1}^N|\lambda_n|^{-2}\right)^{1/N}
\sum_{n=1}^N|\lambda_n|^{-2}\leq\left(\sum_{n=1}^N|\lambda_n|^{2}\right)^{-1}
Are these two bounds correct?
Thanks
I have the following equation:
\gamma=\frac{1}{\frac{1}{N}\sum_{n=1}^N|\lambda_n|^{-2}}
where lambdas are the eigenvalues of an N-by-N circulant matrix A.
I used two properties to bound the above equation:
\frac{1}{N}\sum_{n=1}^N|\lambda_n|^{-2}\geq\left(\prod_{n=1}^N|\lambda_n|^{-2}\right)^{1/N}
\sum_{n=1}^N|\lambda_n|^{-2}\leq\left(\sum_{n=1}^N|\lambda_n|^{2}\right)^{-1}
Are these two bounds correct?
Thanks