How Are Derivatives Interrelated in ODEs and PDEs?

  • Thread starter Thread starter Jhenrique
  • Start date Start date
  • Tags Tags
    Derivatives
Jhenrique
Messages
676
Reaction score
4
Hellow everybody!

A form how various ODE are intercorrelated can be sinterized like this:

##t = t##
##y = y(t)##
##y' = y'(t,\;y)##
##y'' = y''(t,\;y,\;y')##
##y''' = y'''(t,\;y,\;y',\;y'')##

Until here, no problems!

But, how is such relationship wrt the PDE?

Would be this:

##x = x##
##y = y##
##u = u(x,\;y)##
##u_x = u_x(x,\;y,\;u)##
##u_y = u_y(x,\;y,\;u)##
##u_{xx} = u_{xx}(x,\;y,\;u,\;u_x,\;u_y)##
##u_{yy} = u_{yy}(x,\;y,\;u,\;u_x,\;u_y)##
##u_{xy} = u_{xy}(x,\;y,\;u,\;u_x,\;u_y)##
##u_{yx} = u_{yx}(x,\;y,\;u,\;u_x,\;u_y)##

Ie, the derivative of order n wrt x no depends of the derivative of order n wrt y (and vice versa), or depends? If depends, so the relationship would be this:

##x = x##
##y = y##
##u = u(x,\;y)##
##u_x = u_x(x,\;y,\;u,\;u_y)##
##u_y = u_y(x,\;y,\;u,\;u_x)##
##u_{xx} = u_{xx}(x,\;y,\;u,\;u_x,\;u_y,\;u_{yy},\;u_{xy},\;u_{yx})##
##u_{yy} = u_{yy}(x,\;y,\;u,\;u_x,\;u_y,\;u_{xx},\;u_{xy},\;u_{yx})##
##u_{xy} = u_{xy}(x,\;y,\;u,\;u_x,\;u_y,\;u_{xx},\;u_{yy},\;u_{yx})##
##u_{yx} = u_{yx}(x,\;y,\;u,\;u_x,\;u_y,\;u_{xx},\;u_{yy},\;u_{xy})##

Wich 2 last relation is correct?
 
Physics news on Phys.org
BTW, my question make sense?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top