dirk_mec1
- 755
- 13
I'm trying to find a increasing postive function \phi (x) that minimizes the following integral for x in [0, L]:
\int_0^L A \frac{ d ^2 \phi (x) } {dx^2}+ (B +C cos( \phi (x)) ^2 \mbox{d}x
with A and B real positve numbers and
\phi (0) =0
\phi ' (L) =0
When I use the the Lagrange equations I get:
\phi '' (x) + D sin(\phi (x) ) + E sin(\phi (x) ) cos( \phi (x) ) = 0
with D and E a constant.Is this correct?
Can I find a numerical solution for this nonlinear ODE?
\int_0^L A \frac{ d ^2 \phi (x) } {dx^2}+ (B +C cos( \phi (x)) ^2 \mbox{d}x
with A and B real positve numbers and
\phi (0) =0
\phi ' (L) =0
When I use the the Lagrange equations I get:
\phi '' (x) + D sin(\phi (x) ) + E sin(\phi (x) ) cos( \phi (x) ) = 0
with D and E a constant.Is this correct?
Can I find a numerical solution for this nonlinear ODE?
Last edited: