While the terminology that kimcj is referring to is non-standard, it is a terminology that Flip used in his blog post in an attempt to convey they way that hep-theorists actually view massive particles.
If I may, I will say things in a slightly different way that should be complementary to what was written above. Imagine an alternative universe in which the Higgs happens not to couple to the electron at all. In that hypothetical universe, the electron is massless. In fact, there are four distinct particles in that universe that are electron-like. There is (a) a left-chiral particle with charge -1, and (b) its antiparticle which is a right-chiral particle with charge +1. There is also (c) a left-chiral particle with charge +1, and (d) its antiparticle which is right-chiral and charge -1. In Flip's terminology, (a) is called the electron, (b) the anti-electron, (c) the positron, and (d) the anti-positron. Vanadium might be right and this terminology is not helpful, so I won't use it here: I'll just call the particles (a), (b), (c), (d). They are distinct particles because they all have different properties, and one will never turn into the other. E.g. (a) and (b) couple to the W boson while (c) and (d) don't.
In the real world, the Higgs couples to the electron. The consequence of this is that the massless particles (a) and (d) of the alternate universe are seen as one massive particle in our universe, which we call the electron, and the massless particles (b) and (c) of the alternate universe are seen as a single massive positron in our universe. Now in principle, I can still measure the chirality of a particle in our universe (technically, the chirality operator is hermitian and so it corresponds to a potential observable in quantum mechanics). In practice, I can't imagine any apparatus that could do such a thing, but for the sake of argument imagine that I have built a chirality-measuring device (the point is that while I don't know how to build one, there is nothing about it that would violate the
Rules of Quantum Mechanics). I put an electron through my machine, and I measure it is left-chiral, say. Some time later I measure the same particle again, and it might turn out to be right-chiral this time. This is possible only because of the particle's interaction with the Higgs, which allows a left-chiral particle to turn into a right-chiral particle. In the alternate universe, particle (a) will always be left-chiral no matter how long I wait.
The key point is that chirality is not helicity. My massive electron that I discussed before did not change it's helicity (which is the direction of spin with respect to the direction of motion) if I did not disturb it. This is the thing that in your initial post were concerned that it should be conserved because of angular momentum. The chirality of a massive particle is something more subtle, and is not conserved. Helicity and chirality are only the same thing for a truly massless particle, like particles (a) to (d) in my alternate universe.
I hope this is helpful.