It's not clear to me what you are asked to show. Is it this:
Show that
\langle{\{x_n\}, \{y_n\}}\rangle = \sum_{n = 1}^{\infty} x_n y_n
is an inner product for M?
If that's the question, you need to verify that the axioms for an inner product hold; namely
symmetry-- \langle{\{x_n\}, \{y_n\}}\rangle = \langle{\{y_n\}, \{x_n\}}\rangle
linearity in the first variable--\langle{\{a*x_n\}, \{y_n\}}\rangle = a\langle{\{x_n\}, \{y_n\}}\rangle,
and \langle{\{x_n\}, \{y_n\} + \{z_n\}}\rangle = \langle{\{x_n\}, \{y_n\}}\rangle + \langle{\{x_n\}, \{z_n\}}\rangle
positive definiteness--\langle{\{x_n\}, \{x_n\}}\rangle > 0
For more information, see the wikipedia article titled "inner product space".