Raz91
- 20
- 0
Prove the equation
A\left|\psi\right\rangle = \left\langle A\right\rangle\left|\psi\right\rangle + \Delta A\left|\psi\bot\right\rangle
where A is a Hermitian operator and \left\langle\psi |\psi\bot\right\rangle = 0
\left\langle A\right\rangle = The expectation value of A.
\Delta A = The standard deviation of A.
My attempt :
I tried to write \left|\psi\right\rangle as a superposition of the eigenfuncion of the operator A and used the fact that it's a Hermitian operator
A\left|\phi_{n}\right\rangle = \lambda_{n}\left|\phi_{n}\right\rangle , \left|\psi\right\rangle = \sum a_{n}\left|\phi_{n}\right\rangle
so that A\left|\psi\right\rangle = \sum a_{n}\lambda_{n}\left|\phi_{n}\right\rangle
and \left\langle A\right\rangle = \sum |a_{n}|^{2}\lambda_{n}
\Delta A = \sqrt{\left\langle A^{2}\right\rangle - \left\langle A\right\rangle ^{2}}
and I wrote \left|\psi\bot\right\rangle as \left|\psi\bot\right\rangle = \sum b_{n}\left|\phi_{n}\right\rangle
\sum a^{*}_{n}b_{n} = 0
I don't know how to go on from here...
any ideas?
thank you! :)
A\left|\psi\right\rangle = \left\langle A\right\rangle\left|\psi\right\rangle + \Delta A\left|\psi\bot\right\rangle
where A is a Hermitian operator and \left\langle\psi |\psi\bot\right\rangle = 0
\left\langle A\right\rangle = The expectation value of A.
\Delta A = The standard deviation of A.
My attempt :
I tried to write \left|\psi\right\rangle as a superposition of the eigenfuncion of the operator A and used the fact that it's a Hermitian operator
A\left|\phi_{n}\right\rangle = \lambda_{n}\left|\phi_{n}\right\rangle , \left|\psi\right\rangle = \sum a_{n}\left|\phi_{n}\right\rangle
so that A\left|\psi\right\rangle = \sum a_{n}\lambda_{n}\left|\phi_{n}\right\rangle
and \left\langle A\right\rangle = \sum |a_{n}|^{2}\lambda_{n}
\Delta A = \sqrt{\left\langle A^{2}\right\rangle - \left\langle A\right\rangle ^{2}}
and I wrote \left|\psi\bot\right\rangle as \left|\psi\bot\right\rangle = \sum b_{n}\left|\phi_{n}\right\rangle
\sum a^{*}_{n}b_{n} = 0
I don't know how to go on from here...
any ideas?
thank you! :)