flux!
- 32
- 0
I'am trying to prove
\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}
Wolfram tells so http://integrals.wolfram.com/index.jsp?expr=e^(i*x)cos(x)&random=false
But I am stuck in obtaining the first term:
My step typically involved integration by parts:
let u=e^{ix}cos(x) and dv=dx
so:
du=-e^{ix}sin(x)dx+icos(x)e^{ix}du=ie^{ix}(sin(x)+cos(x))dxdu=ie^{2ix}dx
the other one is just: v=x
then:
\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\int xe^{2ix}dx
We will again do another integration by parts for the second term, so we let u=x and dv=e^{2ix}dx then solving further, we obtain:
\int xe^{2ix}dx=\frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}
plugging it back to the original problem, then doing simple distribution, we will obtain:
\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\left ( \frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}\right )
\int e^{ix}cos(x) dx=xe^{ix}cos(x)- \frac{1}{2}xe^{2ix}-\frac{1}{4}ie^{2ix}
notice that we have proved the 2nd term, but the other half is badly away from what the Integration Table and Tools says:
\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}
What have I gone wrong?
\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}
Wolfram tells so http://integrals.wolfram.com/index.jsp?expr=e^(i*x)cos(x)&random=false
But I am stuck in obtaining the first term:
My step typically involved integration by parts:
let u=e^{ix}cos(x) and dv=dx
so:
du=-e^{ix}sin(x)dx+icos(x)e^{ix}du=ie^{ix}(sin(x)+cos(x))dxdu=ie^{2ix}dx
the other one is just: v=x
then:
\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\int xe^{2ix}dx
We will again do another integration by parts for the second term, so we let u=x and dv=e^{2ix}dx then solving further, we obtain:
\int xe^{2ix}dx=\frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}
plugging it back to the original problem, then doing simple distribution, we will obtain:
\int e^{ix}cos(x) dx=xe^{ix}cos(x)-i\left ( \frac{-i}{2}xe^{2ix}+\frac{1}{4}e^{2ix}\right )
\int e^{ix}cos(x) dx=xe^{ix}cos(x)- \frac{1}{2}xe^{2ix}-\frac{1}{4}ie^{2ix}
notice that we have proved the 2nd term, but the other half is badly away from what the Integration Table and Tools says:
\int e^{ix}cos(x) dx= \frac{1}{2}x-\frac{1}{4}ie^{2ix}
What have I gone wrong?