How can I factor higher order equations to find the poles and zeros?

karaandnick
Messages
4
Reaction score
0
For the life of me I cannot figure out how to factor higher order equations so that I can find the poles and zeros, my professor will not show how to do it and expects everyone to already know how, but i have forgotten and cannot find anywhere on the web to show a one and done method, please help!

here is one of the equations
x^6+24x^5+247x^4+1518x^3+5487x^2+10944x+8840

and another
x^3+3.46x^2+7.392x+1.7056

and 5th order and so on. i don't need these solved i just need someone to tell me how to go about solving them. is there any easy way that will work on any degree or will i have to apply multiple methods to each of them depending on the order.
 
Mathematics news on Phys.org
Look up Rational Zeros Theorem. Note that the first polynomial will not factor into irreducible polynomials with integer coefficients.
 
Your professor won't "show you how to do it" because there is NO general method for factoring higher degree polynomials. Factoring is pretty much "trial and error". The "rational zeros theorem" that eumyang mentioned is a good start: If x= m/n is a zero of the polynomial a_nx^n+ a_{n-1}x^{n-1}+ \cdot\cdot\cdot+ a_1x+ a_0, with all coefficients integers, then n must evenly divide the leading coefficient, a_n and m must divide the constant term, a_0. But even that just gives you some possible numbers to check- and there is no guarantee that a polynomial has rational zeros. If fact, there are polynomials, of degree 5 and higher, such that their zeros cannot be written in terms of radicals.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top