MHB How Can I Find All Triples (a, b, c) in This Equation?

  • Thread starter Thread starter Marcelo Arevalo
  • Start date Start date
Click For Summary
The discussion focuses on finding all triples (a, b, c) that satisfy the equation a! = 4(b!) + 10(c!). Several solutions are provided, including (4, 1, 2), (6, 5, 4), and (14, 13, 3). Key observations include that a must be greater than both b and c, and assuming c = b leads to a specific solution. The equation can be manipulated to explore different relationships between a, b, and c, guiding readers on how to approach the problem. The conversation encourages further exploration and completion of the solution process.
Marcelo Arevalo
Messages
39
Reaction score
0
I came across this problem in a book that I am reding.

Find All Triples (a, b, c) if a! = 4(b!) + 10(c!)there is an answer key :
(4, 1, 2) (6, 5, 4) (14, 13, 3)sorry I am not being lazy to solve this.. the truth is I don't know how to begin with in solving this kind of problem.
can you please help me or guide me on how to do this??
thank you everyone.
 
Mathematics news on Phys.org
Hi Marcelo Areyalo!

Here are a few observations that might help to get you started:

Marcelo Arevalo said:
I came across this problem in a book that I am reding.

Find All Triples (a, b, c) if a! = 4(b!) + 10(c!)

there is an answer key :
(4, 1, 2) (6, 5, 4) (14, 13, 3)

1.

$a$ is certainly greater than both $b$ and $c$.

2.

Assume that $c=b$, we then get
$\begin{align*}a!&= 4(b!) + 10(c!)\\&=14b!=14(13!)=14!\implies (a,\,b,\,c)=(14,\,13,\,13)\end{align*}$

3.

Let $c\gt b$, the equality can be rewritten as:

$a!= 4(b!) + 10(c!)$

$\small 1(2)(3)\cdots(b-1)(b)\cdots(c-1)(c)\cdots(a-1)(a)= 4(1)(2)(3)\cdots(b-1)(b) + 10(1)(2)(3)\cdots(b-1)(b)(b+1)\cdots(c-1)(c)$

$\small \dfrac{1(2)(3)\cdots(b-1)(b)(b+1)\cdots(c-1)(c)\cdots(a-1)(a)}{(1)(2)(3)\cdots(b-1)(b) }=\dfrac{ 4(1)(2)(3)\cdots(b-1)(b)}{(1)(2)(3)\cdots(b-1)(b) } + \dfrac{10(1)(2)(3)\cdots(b-1)(b)(b+1)\cdots(c-1)(c)}{(1)(2)(3)\cdots(b-1)(b) }$

$\therefore (b+1)\cdots(c-1)(c)\cdots(a-1)(a)=4+ 10(b+1)\cdots(c-1)(c)$

I will leave it to you and the readers to complete the rest. :D
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K