How Can I Isolate Pna/Pk in This Equation for Calculator Use?

  • Thread starter Thread starter moazad655
  • Start date Start date
moazad655
Messages
1
Reaction score
0
OP warned about not using the homework template
if a brilliant mind could reduce this equation in such way that Pna/Pk stand alone and can be solved on a calculator, I would be forever grateful. The equation goes as follows

e4b9f5de7ebc81b3ba8b4178a0f687ee.png
[/SUB][/SUB]
 
Last edited by a moderator:
Physics news on Phys.org
Assuming that notation means the products of PK and PNa with something else: divide both numerator and denominator by PK, modify your equation to get rid of the log and then solve for your ratio.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top