How Can I Prove This Complex Fraction Equation?

  • Thread starter Thread starter spiruel
  • Start date Start date
  • Tags Tags
    Rearrange
AI Thread Summary
The equation $$\dfrac{l}{c+u}+\dfrac{l}{c-u}=\dfrac{2l}{\sqrt{c^2-u^2}}$$ cannot be proven as both sides are not equal. The simplification process leads to $$\dfrac{2cl}{c^2-u^2}$$ on the left, while the right simplifies to $$\dfrac{2l}{\sqrt{c^2-u^2}}$$. A comparison of the two forms shows they differ when rewritten with common factors. Testing with specific values, such as l = 1, u = 1, and c = 2, further confirms their inequality. Therefore, the two expressions are fundamentally different and cannot be proven equal.
spiruel
Messages
8
Reaction score
0
I'm trying to prove that

$$\dfrac{l}{c+u}+\dfrac{l}{c-u}=\dfrac{2l}{\sqrt{c^2-u^2}}$$My workings so far:
$$\dfrac{l}{c+u}+\dfrac{l}{c-u},$$
put over common denominator,
$$\dfrac{l(c-u)}{(c-u)(c+u)}+\dfrac{l(c+u)}{(c-u)(c+u)},$$
$$\dfrac{l(c-u)+l(c+u)}{(c-u)(c+u)},$$
expand out,
$$\dfrac{cl-lu+cl+lu}{(c-u)(c+u)},$$
group up and cancel out,
$$\dfrac{2cl}{c^2-u^2},$$

we need to make it equal to
$$\dfrac{2l}{\sqrt{c^2-u^2}}$$
HOW?!?
 
Last edited:
Physics news on Phys.org
spiruel said:
I'm trying to prove that

$$\dfrac{l}{c+u}+\dfrac{l}{c-u}=\dfrac{2l}{\sqrt{c^2-u^2}}$$


My workings so far:
$$\dfrac{l}{c+u}+\dfrac{l}{c-u},$$
put over common denominator,
$$\dfrac{l(c-u)}{(c-u)(c+u)}+\dfrac{l(c+u)}{(c-u)(c+u)},$$
$$\dfrac{l(c-u)+l(c+u)}{(c-u)(c+u)},$$
expand out,
$$\dfrac{cl-lu+cl+lu}{(c-u)(c+u)},$$
group up and cancel out,
$$\dfrac{2cl}{c^2-u^2},$$

we need to make it equal to
$$\dfrac{2l}{\sqrt{c^2-u^2}}$$
HOW?!?
You can't because they're not equal. It's more apparent when you rewrite each slightly:
$$\frac{2cl}{c^2-u^2} = \frac{2cl}{c^2[1-(u/c)^2]} = \frac{2l}{c}\frac{1}{1-(u/c)^2}$$ and
$$\frac{2l}{\sqrt{c^2-u^2}} = \frac{2l}{\sqrt{c^2[1-(u/c)^2]}} = \frac{2l}{c}\frac{1}{\sqrt{1-(u/c)^2}}$$
 
There's no law against plugging some numbers in! If you're not sure whether two expressions are equal, try some numbers and see! l = 1, u = 1 and c = 2 proves a lack of equality here.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
4
Views
1K
Replies
1
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
2
Views
1K
2
Replies
56
Views
10K
Replies
2
Views
2K
Back
Top