MHB How can I simplify this integral using integration by parts?

  • Thread starter Thread starter ra_forever8
  • Start date Start date
  • Tags Tags
    Integration
ra_forever8
Messages
106
Reaction score
0
Consider the integral
\begin{equation}
I(x)=\int^{2}_{0} (1+t) e^{xcos[\pi (t-1)/2]} dt
\end{equation}
show that
\begin{equation}
I(x)= 4+ \frac{8}{\pi}x +O(x^{2})
\end{equation}
as $x\rightarrow0$.=> Using integration by parts, but its too complicated for me because of huge exponential term.
please help me.
 
Mathematics news on Phys.org
First represent the integrand as $f(t)+xg(t)+O(x^2)$.
 
grandy said:
Consider the integral
\begin{equation}
I(x)=\int^{2}_{0} (1+t) e^{xcos[\pi (t-1)/2]} dt
\end{equation}
show that
\begin{equation}
I(x)= 4+ \frac{8}{\pi}x +O(x^{2})
\end{equation}
as $x\rightarrow0$.=> Using integration by parts, but its too complicated for me because of huge exponential term.
please help me.

If You expand I(x) in McLaurin series You have...

$\displaystyle I(x) = I(0) + I^{\ '} (0)\ x + \mathcal{O} (x^{2})\ (1)$

The first term is...

$\displaystyle I(0) = \int_{0}^{2} (1 + t)\ d t = 4\ (2)$

The $\displaystyle I^{\ '} (x)$ can be obtained deriving into the integral and is...

$\displaystyle I^{\ '} (0) = \int_{0}^{2} \cos [\frac{\pi}{2}\ (t-1)]\ (1 + t)\ d t = - \frac{2}{\pi^{2}}\ | \pi\ (1+ t)\ \cos ( \frac{\pi}{2}\ t )- 2\ \sin ( \frac{\pi}{2}\ t) |_{0}^{2} = \frac{8}{\pi}\ (3) $

Kind regards

$\chi$ $\sigma$
 
That was so clear. you made the solution so easy to understand. Thank you very much sir.
 
The $\displaystyle I^{\ '} (x)$ can be obtained deriving into the integral and is...

$\displaystyle I^{\ '} (0) = \int_{0}^{2} \cos [\frac{\pi}{2}\ (t-1)]\ (1 + t)\ d t $

how did you get the above term or $I'(x)$ term?
please clarify me. other than that everything is perfect.
 
grandy said:
The $\displaystyle I^{\ '} (x)$ can be obtained deriving into the integral and is...

$\displaystyle I^{\ '} (0) = \int_{0}^{2} \cos [\frac{\pi}{2}\ (t-1)]\ (1 + t)\ d t $

how did you get the above term or $I'(x)$ term?
please clarify me. other than that everything is perfect.

chisigma used this: Differentiation under the integral sign - Wikipedia, the free encyclopedia

He differentiated wrt $x$.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top