How Can I Understand the Representation Theory of Lie Algebras?

Jim Kata
Messages
197
Reaction score
10
I'm trying to derive the Gell Mann matrices for fun, but I really don't know representation theory. Can somebody help me? I have Hall's and Humphrey's books, but only online versions and staring at them makes me go crosseyed, and I'm to broke to buy a real book on representation theory. Let me tell you what I kind of know, and maybe you can help me from there.

So, I know the root system of su(3) is A_2, ok? Now the Weyl group for A_2 is given by dihedral three, the symmetries of an equilateral triangle, fine. I don't really understand how you go from looking at A_2 to determining that its Weyl group is dihedral three. I understand it has rotational symmetry like cyclic six, but whatever. From the root diagrams, I should be able to determine the weights of the representation and hence the matrices that make up the Cartan subalgebra of su(3), I guess the vertices of the triangle being the weights I think. The elements of the Weyl group act like ladder operators on the Cartan subalgebra?
Can someone simply spell out the algorithm from looking at root diagrams to finding the Weyl group, Cartan subalgebras and determining the representations of the lie algebras. I understand su(2) pretty well. I also heard (this weeks finds John Baez) that the root systems of A_n were related to the alternating group, but I don't see it. Dihedral three is not alternating two.
 
Physics news on Phys.org
I may have quoted Baez wrong, I think he was talking about the root systems of A_n being the same as the symmetries of an n simplex
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top