How can I write this sequence in terms of factorials?

martinrandau
Messages
9
Reaction score
0
Can anybody help me solving this?

Write in terms of factorials

n((n^2)-1)

The correct answer is
(n+1)!/(n-2)!

but I don't know how to get there, and since it's week- end I have no chance to ask anyone teachers, etc.
//Martin
 
Mathematics news on Phys.org
n(n2-1) = n(n-1)(n+1)
 
Originally posted by martinrandau
Can anybody help me solving this?

Write in terms of factorials

n((n^2)-1)

The correct answer is
(n+1)!/(n-2)!


Please notice the expression marks (!). The task is not to factorise it by "normal" means, but to find an expression as a sequence.
ex. 7! = 1 x 2 x 3 x 4 x 5 x 6 x 7 = 5040
n!= 1 x 2 x 3 x...x n

It's called the factorial r (!).
Thank you for your help anyway!
 
Originally posted by martinrandau
The correct answer is
(n+1)!/(n-2)!

I'll give you a hint.

Expand the numerator and denominator of the above ratio and cancel the factors common to both. For instance, the numerator is:

(n+1)!=(n+1)(n)(n-1)(n-2)...

Get the idea?
 
Yes!:smile:
Thank you!

//Martin
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
2K
Replies
5
Views
2K
Replies
13
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Back
Top