How can I write this sequence in terms of factorials?

AI Thread Summary
The discussion focuses on expressing the mathematical sequence n(n^2 - 1) in terms of factorials. The correct expression is identified as (n + 1)! / (n - 2)!. Participants discuss the method to derive this expression by expanding the numerator and denominator and canceling common factors. The importance of understanding factorial notation and its application in this context is emphasized. The thread concludes with an encouragement to explore the cancellation process to clarify the solution.
martinrandau
Messages
9
Reaction score
0
Can anybody help me solving this?

Write in terms of factorials

n((n^2)-1)

The correct answer is
(n+1)!/(n-2)!

but I don't know how to get there, and since it's week- end I have no chance to ask anyone teachers, etc.
//Martin
 
Mathematics news on Phys.org
n(n2-1) = n(n-1)(n+1)
 
Originally posted by martinrandau
Can anybody help me solving this?

Write in terms of factorials

n((n^2)-1)

The correct answer is
(n+1)!/(n-2)!


Please notice the expression marks (!). The task is not to factorise it by "normal" means, but to find an expression as a sequence.
ex. 7! = 1 x 2 x 3 x 4 x 5 x 6 x 7 = 5040
n!= 1 x 2 x 3 x...x n

It's called the factorial r (!).
Thank you for your help anyway!
 
Originally posted by martinrandau
The correct answer is
(n+1)!/(n-2)!

I'll give you a hint.

Expand the numerator and denominator of the above ratio and cancel the factors common to both. For instance, the numerator is:

(n+1)!=(n+1)(n)(n-1)(n-2)...

Get the idea?
 
Yes!:smile:
Thank you!

//Martin
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
1
Views
2K
Replies
5
Views
2K
Replies
13
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K
Back
Top