diffeqnoob
- 13
- 0
Okay, I know this is alot... but I am stuck, so here goes...
Use the method of Laplace transform to solve the initial value problem
y''+3ty'-6y=0, y(0) = 1, y'(0) = 0
L\{y'' + 3ty' - 6y\} = L\{0\}
s^{2}Y(s) - sy(0) - y'(0) + 3L\{ty'\} - 6Y(s) = 0
s^{2}Y(s) - s(1) - 0 - \frac{d}{ds}\left(3 L\{ty'\}\right) -6Y(s) = 0
Now to resolve the - \frac{d}{ds}\left(3 L\{ty'\}\right)
= - \frac{d}{ds}\left(3 L\{ty'\}\right)
= - \frac{d}{ds}3 \left(sY(s) - y(0)\right)
= -3sY'(s) - 3Y(s)
Plugging it back into the eq we now have
s^{2}Y(s) - s - 3sY'(s) - 3Y(s) - 6Y(s) = 0
-3sY'(s) + (s^{2}-9)Y(s) - s = 0
Y'(s) + \left(-\frac{s}{3} + \frac{3}{s}\right)Y(s) = -\frac{1}{3}
\mu = e^{\int\left(-\frac{s}{3} + \frac{3}{s}\right)ds}
\mu = e^{\left(-\frac{s^{2}}{6} + ln(s^{3})\right)
\mu = s^{3} e^{\left(-\frac{s^{2}}{6}\right)
\int\left(\frac{d}{ds}(s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s)\right) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds
s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds
RIGHT SIDE
=\left(\frac{1}{3}\right)(-3(s^{2}+6)e^{-\left(\frac{s^2}{6}\right)
=(s^2+6)e^{-\left(\frac{s^2}{6}\right) + A
Y(s)=\frac{(s^2+6)}{s^{3}} + \frac{A e^ \frac{s^2{6}{s^{3}}
Limit...as... s \rightarrow \infty...Y(s) = 0...therefore A = 0
Y(s) = \frac{s^2+6}{s^3}
Break down the Inverse Laplace
L^{-1}\{\frac{s^2+6}{s^3}\}
=L^{-1}\{\frac{s^2}{s^3}\} + L^{-1}{\frac{6}{s^3}\}
=L^{-1}\{\frac{1}{s}\} + L^{-1}{\frac{6}{s^3}\}
= 1 + ?
This is where I get lost... I don't know how to do the other side... Please help.
Use the method of Laplace transform to solve the initial value problem
y''+3ty'-6y=0, y(0) = 1, y'(0) = 0
L\{y'' + 3ty' - 6y\} = L\{0\}
s^{2}Y(s) - sy(0) - y'(0) + 3L\{ty'\} - 6Y(s) = 0
s^{2}Y(s) - s(1) - 0 - \frac{d}{ds}\left(3 L\{ty'\}\right) -6Y(s) = 0
Now to resolve the - \frac{d}{ds}\left(3 L\{ty'\}\right)
= - \frac{d}{ds}\left(3 L\{ty'\}\right)
= - \frac{d}{ds}3 \left(sY(s) - y(0)\right)
= -3sY'(s) - 3Y(s)
Plugging it back into the eq we now have
s^{2}Y(s) - s - 3sY'(s) - 3Y(s) - 6Y(s) = 0
-3sY'(s) + (s^{2}-9)Y(s) - s = 0
Y'(s) + \left(-\frac{s}{3} + \frac{3}{s}\right)Y(s) = -\frac{1}{3}
\mu = e^{\int\left(-\frac{s}{3} + \frac{3}{s}\right)ds}
\mu = e^{\left(-\frac{s^{2}}{6} + ln(s^{3})\right)
\mu = s^{3} e^{\left(-\frac{s^{2}}{6}\right)
\int\left(\frac{d}{ds}(s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s)\right) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds
s^{3}e^{-\left(\frac{s^2}{6}\right)}Y(s) = \int-\left(\frac{1}{3}\right)s^{3}e^{-\left(\frac{s^2}{6}\right)} ds
RIGHT SIDE
=\left(\frac{1}{3}\right)(-3(s^{2}+6)e^{-\left(\frac{s^2}{6}\right)
=(s^2+6)e^{-\left(\frac{s^2}{6}\right) + A
Y(s)=\frac{(s^2+6)}{s^{3}} + \frac{A e^ \frac{s^2{6}{s^{3}}
Limit...as... s \rightarrow \infty...Y(s) = 0...therefore A = 0
Y(s) = \frac{s^2+6}{s^3}
Break down the Inverse Laplace
L^{-1}\{\frac{s^2+6}{s^3}\}
=L^{-1}\{\frac{s^2}{s^3}\} + L^{-1}{\frac{6}{s^3}\}
=L^{-1}\{\frac{1}{s}\} + L^{-1}{\frac{6}{s^3}\}
= 1 + ?
This is where I get lost... I don't know how to do the other side... Please help.
Last edited: