daudaudaudau
- 297
- 0
Homework Statement
If \lim_{z\rightarrow z_0}f(z)=A and \lim_{z\rightarrow z_0}g(z)=B then prove that \lim_{z\rightarrow z_0}\frac{f(z)}{g(z)}=\frac{A}{B} for B\neq0
The Attempt at a Solution
I write f(z)=A+\epsilon_1(z) and g(z)=B+\epsilon_2(z), where the epsilon-functions tend to zero as z tends to z_0. I now write
<br /> \left|\frac{f(z)}{g(z)}-\frac{A}{B}\right|=\left|\frac{A+\epsilon_1(z)}{B+\epsilon_2(z)}-\frac{A}{B}\right|=\left|\frac{AB+B\epsilon_1(z)-AB-A\epsilon_2(z)}{B^2+B\epsilon_2(z)}\right|\le\frac{|B\epsilon_1(z)|+|A\epsilon_2(z)|}{|B^2+B\epsilon_2(z)|}<br />
And since the above can be made arbitrarily small by letting z tend to z_0, I am done, or what do you think?