How Can the Sequence (n^2 +10)/(n^3 -10) Be Proven to Converge to 0?

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Proof
transgalactic
Messages
1,386
Reaction score
0
|(n^2 +10)/(n^3 -10)<(n^2 +10)/(n^3)< ..<e

i need some (1/n)<e


??
 
Physics news on Phys.org
What's the actual question that you're asking?
 
i need to prove a convergence

i stuck on the last part
i got

n>10/(e-1)what to write about N ??
 
To show it is bounded:

0 < |(n^2 +10)/(n^3 -10)<2(n^2)/(n^2) = 2

To show it converges, try to show that the sequence is monotone, and use the fact that all bounded and monotonic sequences converge. Or, see below:


To show it converges:

[n^2(1 + 10/n^2)] / [n^2(n - 10/n^2)]

= (1 + 10/n^2) / (n - 10/n^2)

the 10/n^2 in both the numerator and denominator converge to 0 and so we have 1/n, which converges to 0 as well.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top