Krikri
- 9
- 0
Homework Statement
I want to compute the electric field knowing the magnetic field using a vector identity
Homework Equations
E=i \frac{c}{k} (∇\timesB)
B(r,t)=(μ0ωk/4π) (\hat{r}×\vec{p})[1-\frac{1}{ikr}](eikr/r)
\vec{p}=dipole moment,constant vector
we have ti use the identity \nabla\times(A\timesB)=(B\cdot∇)A-(A\cdot∇)B +A(∇\cdotB) +B(∇\cdotA)
the identy simplifies in this situtation because for some reason we take (A\cdot∇)B=0 and A(∇\cdotB)=0
So applying this we have :
E(r,t)=ic/k(μ0ωk/4π) \nabla[eikr/r2(1-\frac{1}{ikr}]×(r×p)+ic/k(μ0ωk/4π)[eikr/r2(1-\frac{1}{ikr}]∇×(r×p)
E(r,t)=i(ω/4πε0c)[ik(\frac{1}{r^2}-\frac{1}{ikr^3})]eikr r×(r×p) + i(ω/4πε0c)[(eikr/r^2)(1-\frac{1}{ikr})][-∇\cdotr)p+(p\cdot∇)r] the this part says it's equal to -∇\cdotr)p+(p\cdot∇)r=-3p+p=-2p so
E(r,t)=\frac{k^2}{4πε0}(r×p)×r (ei(kr-ωt)/r) + \frac{1}{4πε0}[3r(r\cdotp)-p](\frac{1}{r^3}-\frac{ik}{r^2})ei(kr-ωt)
My problem is i don't know how the vector identy is used here..with this tools we calculate magnetic and electric fields in the approximation zones( near,far-field) when vector potential is given. Can someone give a more simple example than this of what he did in this solution?
Last edited: