lokofer
- 104
- 0
If we have the next Lambert series:
S(x)= \sum_{n=0}^{\infty} \frac{ a(n) x^n }{1-x^n }
my question is..if you know what S(x) is then..could you obtain the value of the a(n) ?..or simply working with the Dirichlet series version:
\sum_{n=0}^{\infty}a(n)n^{-s}= \zeta (s) \sum _{n=0}^{\infty}b(n)n^{-s}
Where S(x)= \sum_{n=0}^{\infty} \frac{ a(n) x^n }{1-x^n }=\sum_{n=0}^{\infty} \frac{ b(n) x^n }
S(x)= \sum_{n=0}^{\infty} \frac{ a(n) x^n }{1-x^n }
my question is..if you know what S(x) is then..could you obtain the value of the a(n) ?..or simply working with the Dirichlet series version:
\sum_{n=0}^{\infty}a(n)n^{-s}= \zeta (s) \sum _{n=0}^{\infty}b(n)n^{-s}
Where S(x)= \sum_{n=0}^{\infty} \frac{ a(n) x^n }{1-x^n }=\sum_{n=0}^{\infty} \frac{ b(n) x^n }