santa
- 18
- 0
solve in R
(x^2+2)^{1/3}+(4x^2+3x-2)^{1/3}=(3x^2+x+5)^{1/3}+(2x^2+2x-5)^{1/3}
(x^2+2)^{1/3}+(4x^2+3x-2)^{1/3}=(3x^2+x+5)^{1/3}+(2x^2+2x-5)^{1/3}
santa said:solve in R
(x^2+2)^{1/3}+(4x^2+3x-2)^{1/3}=(3x^2+x+5)^{1/3}+(2x^2+2x-5)^{1/3}
Are you sure thatVietDao29 said:Then, your original equation will becomes:
\sqrt[3]{\alpha} + \sqrt[3]{\gamma - \alpha} = \sqrt[3]{\beta} + \sqrt[3]{\gamma - \beta}
When \gamma = 0, both sides equal 0
CompuChip said:Are you sure that
\sqrt[3]{\alpha} + \sqrt[3]{-\alpha} = \sqrt[3]{\alpha - \alpha} = 0
CompuChip said:Taking x = 0 the formula becomes
\sqrt[3]{2} + \sqrt[3]{-2} = \sqrt[3]{5} + \sqrt[3]{-5}
which, numerically, is something like
1.89 + 1.09 i = 2.56 + 1.48 i
santa said:good work but
let $ \sqrt[3]{x^2+2}=a, \ \sqrt[3]{4x^2+3x-2}=b, \ \sqrt[3]{3x^2+x+5}=c, \ \sqrt[3]{2x^2+2x-5}=d.
these may be help
VietDao29 said:On graphing it, I can see there are actually 4 solutions.. Not sure how you can obtain another 2 solutions.![]()
NateTG said:\alpha=\beta
and
\gamma=\alpha + \beta
Are obviously solutions - no idea if that gets you anything.
Edit: Looks like those are all imaginary solutions.
solve in R
(x^2+2)^{1/3}+(4x^2+3x-2)^{1/3}=(3x^2+x+5)^{1/3}+(2x^2+2x-5)^{1/3}