How Can You Solve the Differential Equation dy/dx = 1/(x+y)?

  • Thread starter Thread starter domesticbark
  • Start date Start date
domesticbark
Messages
6
Reaction score
0

Homework Statement


dy/dx = 1/(x+y)


Homework Equations


Errr. None that I know of.


The Attempt at a Solution


<br /> v=x+y<br />

<br /> dy/dx=1/v<br />

<br /> dv/dx=1+dy/dx<br />

<br /> dv/dx=1+1/v<br />

<br /> dv/dx=(v+1)/v<br />

<br /> dv*v/(v+1)=dx<br />

<br /> v+1/(v+1) - 1/(v+1) = v/(v+1)<br />

<br /> \int 1\,dv - \int 1/(v+1)\,dv=\int 1\,dx<br />

<br /> v - \log (v+1) = x + C<br />

<br /> e^v/(v+1)=Ce^x<br />

<br /> e^(x+y)/(x+y+1)=Ce^x<br />


I'm just wondering whether I can simplify this or maybe solve it another way so I can get y= (stuff)
 
Physics news on Phys.org
domesticbark said:

Homework Statement


dy/dx = 1/(x+y)


Homework Equations


Errr. None that I know of.


The Attempt at a Solution


<br /> v=x+y<br />

<br /> dy/dx=1/v<br />

<br /> dv/dx=1+dy/dx<br />

<br /> dv/dx=1+1/v<br />

<br /> dv/dx=(v+1)/v<br />

<br /> dv*v/(v+1)=dx<br />

<br /> v+1/(v+1) - 1/(v+1) = v/(v+1)<br />

<br /> \int 1\,dv - \int 1/(v+1)\,dv=\int 1\,dx<br />

<br /> v - \log (v+1) = x + C<br />

<br /> e^v/(v+1)=Ce^x<br />

<br /> e^(x+y)/(x+y+1)=Ce^x<br />


I'm just wondering whether I can simplify this or maybe solve it another way so I can get y= (stuff)

Assuming your work is correct (I didn't check it), you can leave the solution in implicit form. You might not be able to solve the equation you ended up with for y as an explicit function of x.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top