Somefantastik
- 226
- 0
\int^{t}_{0}e^{-s}cos^2(s)ds
let u = e^{-s}, \ du = -e^{-s}, \ dv = cos^{2}(s)ds, \ v = \frac{1}{2}s + \frac{1}{4}sin(2s)
then
\int^{t}_{0}e^{-s}cos^2(s)ds =\left[e^{-s}(\frac{1}{2}s - \frac{1}{4}sin(2s)\right]^{t}_{0} + \int^{t}_{0}e^{-s}(\frac{1}{2}s-\frac{1}{4}sin(2s)ds
let u = e^{-s}, \ du = -e^{-s}ds, \ dv = \frac{1}{2}s-\frac{1}{4}sin(2s)ds, \ v = \frac{1}{4}s^{2} + \frac{1}{8}cos(2s)
then
= e^{-t}\left(\frac{1}{2}t - \frac{1}{4}sin(2t)\right) + \left[e^{-s}\left(\frac{1}{4}s^{2} + \frac{1}{8}cos(2s)\right)\right]^{t}_{0} + \int^{t}_{0}e^{-s}\left(\frac{1}{4}s^{2} + \frac{1}{8}cos(2s)\right)
How to proceed? I can't seem to get this
\int^{t}_{0}e^{-s}\left(\frac{1}{4}s^{2} + \frac{1}{8}cos(2s)\right)
to equal this
\int^{t}_{0}e^{-s}cos^2(s)ds
So I'm not sure what to do next.
Any suggestions?
let u = e^{-s}, \ du = -e^{-s}, \ dv = cos^{2}(s)ds, \ v = \frac{1}{2}s + \frac{1}{4}sin(2s)
then
\int^{t}_{0}e^{-s}cos^2(s)ds =\left[e^{-s}(\frac{1}{2}s - \frac{1}{4}sin(2s)\right]^{t}_{0} + \int^{t}_{0}e^{-s}(\frac{1}{2}s-\frac{1}{4}sin(2s)ds
let u = e^{-s}, \ du = -e^{-s}ds, \ dv = \frac{1}{2}s-\frac{1}{4}sin(2s)ds, \ v = \frac{1}{4}s^{2} + \frac{1}{8}cos(2s)
then
= e^{-t}\left(\frac{1}{2}t - \frac{1}{4}sin(2t)\right) + \left[e^{-s}\left(\frac{1}{4}s^{2} + \frac{1}{8}cos(2s)\right)\right]^{t}_{0} + \int^{t}_{0}e^{-s}\left(\frac{1}{4}s^{2} + \frac{1}{8}cos(2s)\right)
How to proceed? I can't seem to get this
\int^{t}_{0}e^{-s}\left(\frac{1}{4}s^{2} + \frac{1}{8}cos(2s)\right)
to equal this
\int^{t}_{0}e^{-s}cos^2(s)ds
So I'm not sure what to do next.
Any suggestions?