How Can You Solve This Challenging Integral Evaluation Problem?

  • Thread starter Thread starter hadi amiri 4
  • Start date Start date
  • Tags Tags
    Integral
hadi amiri 4
Messages
98
Reaction score
1
Evaluate
\int\frac{arctan(x)dx}{(1+x^2)^\frac{3}{2}}
 
Physics news on Phys.org


Make the substitution:
x=\tan(u),\to\frac{dx}{du}=\frac{1}{\cos^{2}u}
Thus, we get:
dx=\frac{du}{\cos^{2}(u)}
and insertion in your integral yields:
\int\frac{arctan(x)}{(1+x^{2})^{\frac{3}{2}}}=\int{u}\cos(u)du
 


your solution seems nice
honestly i thought it is a hard one,becouse i picked it form "A coures of pure mathematics"
 
Back
Top