Orion1
- 961
- 3
[/color]kurious said:If neutrons stay intact and get closer together than 10^-15 metres in a neutron star, would the exchange of mesons between neutrons stop and be replaced by the exchange of gluons, and would the gluons cause an attractive or repulsive force between neutrons? A repulsive force could
stop the collapse of the neutron star in place of neutron degeneracy pressure.
Einstein field equation gravitational potential:
\nabla^2 \phi = 4 \pi G \left( \rho + \frac{3P}{c^2} \right)
General Relativity gravitational pressure:
P_e = \frac{c^2}{3} \left( \frac{\nabla^2 \phi}{4 \pi G} - \rho \right)
Classical Yukawa Pressure:
P_y = f^2 \frac{e^{- \frac{r_1}{r_0}}}{4 \pi r_s^2 r_1^2}
Einstein-Yukawa criterion:
P_e = P_y
\frac{c^2}{3} \left( \frac{\nabla^2 \phi}{4 \pi G} - \rho \right) = f^2 \frac{e^{- \frac{r_1}{r_0}}}{4 \pi r_s^2 r_1^2}
Is this criterion conceptually correct?
Classical Schwarzschild-Yukawa nuclear interaction strength Limit:
f_1 = \frac{r_1c^2}{2} \sqrt{\frac{e^{\frac{r_1}{r_0}}}{G}}
r_1 < r_0
Based upon the Orion1 equations, what are the Standard International (SI) units for f_1 ?
\frac{c^2}{3} \left( \frac{\nabla^2 \phi}{4 \pi G} - \rho \right) = \frac{c^4}{16 \pi G r_s^2}
\left( \frac{\nabla^2 \phi}{4 \pi G} - \rho \right) = \frac{3 c^2}{16 \pi G r_s^2}
Classical Einstein-Schwarzschild critical density:
\rho_c = \left( \frac{\nabla^2 \phi}{4 \pi G} - \frac{3 c^2}{16 \pi G r_s^2} \right) = \frac{}{4 \pi G} \left( \nabla^2 \phi - \frac{3 c^2}{4 r_s^2} \right)
\rho_c = \frac{}{4 \pi G} \left( \nabla^2 \phi - \frac{3 c^2}{4 r_s^2} \right)
Based upon the Orion1 equations, what are the Standard International (SI) units for \nabla and \phi?
Reference:
http://super.colorado.edu/~michaele/Lambda/gr.html
https://www.physicsforums.com/showthread.php?t=40562
[/color]
Last edited by a moderator: