- 6,221
- 31
Homework Statement
It is given that the soltuion of the vector equation y x a=b is
\underline{y}= \lambda \underline{a} + \frac{\underline{a} \times \underline{b}}{| \underline{a}|^2}
with a . b=0 and \lambda is a scalar. Use this information to find the solution of the equation (x x a) + (x . b)c=d.
Where x is the unknown vector and \underline{a} \cdot \underline{c} \neq 0[/tex]<br /> <br /> <br /> <h2>Homework Equations</h2><br /> <br /> \underline{A} \cdot \underline{B}= |\underline{A}| |\underline{B}|cos\theta<br /> <br /> \underline{A} \times \underline{B} = |\underline{A}| |\underline{B}|sin\theta \hat{n}<br /> <br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> This is my method of thinking.<br /> <br /> If \underline{a} \cdot \underline{b} =0 then this means that <u>a</u> and <u>b</u> are perpendicular<br /> <br /> y \times a =b<br /> <br /> a \time (y \times a)= a \times b<br /> <br /> = y(a \cdot c)-a(a \cdot y)= a \times b<br /> <br /> \Rightarrow = y(a \cdot c)=a(a \cdot y)+a \times b<br /> <br /> \div a \cdot c<br /> <br /> y= a \frac{a \cdot y}{a \cdot c} + \frac{a \times b}{a \cdot c}<br /> <br /> Comparing this with the given solution:<br /> <br /> \lambda = \frac{a \cdot y}{a \cdot c}<br /> <br /> AND<br /> <br /> |a|^2={a \cdot c}<br /> <br /> On the right track so far?<br /> <br /> <br /> (x \times a) + (x \cdot b)c=d<br /> <br /> a \times (x \times a)+ a \times (x \cdot b)c= a \times d<br /> <br /> x(a \cdot a)+ a \times c(x \cdot b)=a \times d<br /> <br /> x |a|^2 + a \times c(x \cdot b)= a \times d<br /> <br /> x(a \cdot c) + a \times c( x \cdot b)= a \times d<br /> <br /> and I am stuck here.