Identity
- 151
- 0
Homework Statement
Normalise
\Psi(x,t) = Ae^{-\lambda |x|}e^{-i \omega t}
Homework Equations
(i.e. it must satisfy \int_{-\infty}^{\infty} |\Psi (x,t)|^2 dx=1)
The Attempt at a Solution
This is my first attempt at normalisation and I don't know how valid my reasoning is, can someone please check to see if I'm doing it right:
\int_{-\infty}^{\infty}|\Psi (x,t)|^2 dx = \frac{A^2}{\lambda} e^{-2 i \omega t}
\Rightarrow \frac{\lambda}{A^2}e^{2i \omega t} \int_{-\infty}^{\infty}|\Psi (x,t)|^2 dx =1
\int_{-\infty}^\infty \left(\frac{\sqrt{\lambda}}{A}e^{i\omega t} |\Psi|\right)^2dx =1
\therefore \Psi (x,t)_{normalised} = \frac{\sqrt{\lambda}}{A}e^{i\omega t} \times \left(Ae^{-\lambda |x|}e^{-i \omega t}\right) = \sqrt{\lambda}e^{-\lambda |x|}
thanks