bobred
- 170
- 0
Homework Statement
I have the two functions below and have to find the convolution \beta * L
Homework Equations
Assume a<1
<br /> \beta(x)=\begin{cases}<br /> \frac{\pi}{4a}\cos\left(\frac{\pi x}{2a}\right) & \left|x\right|<a\\<br /> 0 & \left|x\right|\geq a<br /> \end{cases}<br />
<br /> L(x)=\begin{cases}<br /> 1 & \left|x\right|<1\\<br /> 0 & \left|x\right|\geq 1<br /> \end{cases}<br />
The Attempt at a Solution
\beta * L=\int^\infty_{-\infty}\beta(y)L(x-y)dy=\int^\infty_{-\infty}\beta(x-y)L(y)dy
What I am unsure about is the limits and which integral to use. Any hints would be greatly appreciated.