I How do I find this state |j,m=j> to calculate another state?

valanna
Messages
9
Reaction score
0
I’m confused about how you find the vector |s;s⟩ to use in the general equation
|θ,ϕ⟩=exp(−iϕS3) * exp(−iθS2) |s;s⟩
For spin Coherent states (From http://www.scholarpedia.org/article/Coherent_state_(Quantum_mechanics)#4._Spin_Coherent_States
Eq 12)
Or
how you find the vector |j,m=j⟩ to use in the equation
|θ,ϕ⟩=exp(iθ[Jx*sin(ϕ)−Jy*cos(ϕ)]) |j,m=j⟩
(From https://arxiv.org/pdf/0805.1264v1.pdf
Eq 14)

For the above state |j,m=j⟩ in the paper it appears to be assumed you should just know how to find this. I know that it is an eigenstate but I don’t know how to go from there to get that vector so that I can solve for |θ,ϕ⟩
I need it for j=4 but I’d like to be able to understand how to get it for any j and understand why?
 
Physics news on Phys.org
As explained in your first link, ##|s,s\rangle## is the normalized eigenvector of ##S_3## to the eigenvalue ##s##. So you pick the representation you have, write down the operator ##S_3## in a basis of this representation, and find the eigenvector numerically.
 
  • Like
Likes valanna
Thank you,
Sorry I missed that, I've figured out what I need now thank you so much
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...
I read Hanbury Brown and Twiss's experiment is using one beam but split into two to test their correlation. It said the traditional correlation test were using two beams........ This confused me, sorry. All the correlation tests I learnt such as Stern-Gerlash are using one beam? (Sorry if I am wrong) I was also told traditional interferometers are concerning about amplitude but Hanbury Brown and Twiss were concerning about intensity? Isn't the square of amplitude is the intensity? Please...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Back
Top