How do I prove this? (summation problem)

  • Thread starter Thread starter Gridvvk
  • Start date Start date
AI Thread Summary
The discussion centers on proving the inequality $$\sum_{i=1}^{n} x_i^2 > \frac{1}{n^2}(\sum_{i=1}^{n} x_i)^2$$ for any real observations x_i, with n being an integer greater than 1. Initial attempts involved manipulating the inequality and exploring the Cauchy-Schwartz inequality. By applying Cauchy-Schwartz with y_i set to 1, the participants derived that $$n \sum_{i=1}^{n} x_i^2$$ is indeed greater than $$\sum_{i=1}^{n} x_i^2$$, confirming the original inequality. The proof successfully demonstrates the validity of the inequality under the given conditions.
Gridvvk
Messages
54
Reaction score
1
$$\sum_{i=1}^{n} x_i^2 > \frac{1}{n^2}(\sum_{i=1}^{n} x_i)^2$$

Note: each x_i is any observation (or statistic) it can be any real number and need not be constrained in anyway whatsoever, though you can take n > 1 and integer (i.e. there is at least two observations and the number of observations is discrete).

I'm not sure if this true or not, but part of my analysis to a particular problem assumed this was true, and I'm trying to prove it is indeed true (it seems to be case for any examples I come up with).

So far I came up with,
$$n^2 \sum_{i=1}^{n} x_i^2 > \sum_{i=1}^{n} x_i^2 + 2\sum_{i \neq j, i > j} x_ix_j$$
$$(n^2 - 1)\sum_{i=1}^{n}x_i^2 > 2\sum_{i \neq j,\: i > j} x_ix_j$$

and I'm not sure how to proceed from there.
 
Mathematics news on Phys.org
Are you familiar with the Cauchy-Schwartz inequality?
 
micromass said:
Are you familiar with the Cauchy-Schwartz inequality?

Yes I am, but I'm not sure how to use it here. If I was interested in both a x_i and y_i then I would see how to use it here, but here I'm only looking at a x_i.
 
Gridvvk said:
Yes I am, but I'm not sure how to use it here. If I was interested in both a x_i and y_i then I would see how to use it here, but here I'm only looking at a x_i.

Maybe take all ##y_i = 1##?
 
  • Like
Likes 1 person
micromass said:
Maybe take all ##y_i = 1##?

Hmm. Alright then by Cauchy-Schwartz I can say,

$$(\sum_{i=1}^{n} x_i \times 1)^2 \le (\sum_{i=1}^{n}x_i^2) (\sum_{i=1}^{n}1) = n\sum_{i=1}^{n}x_i^2 < n^2 \sum_{i=1}^{n}x_i^2$$

Which was what I wanted.

Thanks!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top