How Do I Set Up the Schrodinger Equation for This Wave Function?

  • Thread starter Thread starter apigban
  • Start date Start date
AI Thread Summary
The discussion focuses on setting up the Schrödinger equation for a particle described by the wave function Ψ = A sinh(x). Users debate whether to use the exponential form of the hyperbolic function and clarify that it does not affect the outcome in the Schrödinger equation. Concerns about normalization arise, with one user noting that the complex conjugate of a real-valued function is the function itself, and the normalization integral should be calculated between specific limits. Another participant corrects the normalization approach, emphasizing the need to properly integrate the function. The conversation concludes with acknowledgment of the integration process and the flexibility in using either form of the wave function.
apigban
Messages
6
Reaction score
0
Hi! I am having some problems in setting up the Schrodinger equation for a particle described by the wave function:

\Psi = A sinh (x)

should I use the exponential form of the hyperbolic function?

[URL]http://62.0.5.135/upload.wikimedia.org/math/9/c/7/9c74b71126c6bb1f4d6b865019a2735e.png[/URL]


Also, for normalization, do you have any guides that show how to form the complex conjugate of the above function (i don't see the complex parts).
 
Last edited by a moderator:
Physics news on Phys.org
What's the problem with the Schroedinger equation? Are you using the time-independent version (I assume you should be), is there a potential energy associated with this wavefunction?

Further, the complex conjugate of a real valued function is just the real function again. So normalization should look something like:

1=A2 \intsinh2(x)dx
 
Last edited:
This is my solution to the normalization of the wave equation. I am sorry I am totally new at this.

[PLAIN]https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-snc6/249293_246586558696823_100000364410765_866703_7618168_n.jpg

Is it correct? I just followed wikipedia's
http://en.wikipedia.org/wiki/Normalizable_wave_function#Example_of_normalization

My question on the Schroedinger Eq. is that: Should i use the exponential form of the hyperbolic function? or does it matter if i use the hyperbolic? In the normalization above i used the exponential form.
 
Last edited by a moderator:
When you use the wavefunction in the Schrodinger equation, it shouldn't matter what form (hyperbolic or exponential) you use. Your normalization is off however. The integral of sinh2(x) is:

Exponential form: \frac{1}{4} (exp(2x)/2+exp(-2x)/2-2x)
Hyperbolic form: \frac{1}{4} (sinh(2x) -2x)

Further, you need to take the integral only between o and L, the other parts can be ignored. I may be reading this wrong, but it seems like you tried to absorb the exponentials into A2 and ignored any actual integration.

Cheers,
-Malus
 
thanks! I did the integration. and found what the factor is. thanks also for pointing that hyperbolic or exponentials can be used!.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top