How do I solve a PDE of this form

  • Thread starter Thread starter a14smith
  • Start date Start date
  • Tags Tags
    Form Pde
a14smith
Messages
1
Reaction score
0
Hi:

I have come across a PDE of the following form in my research:

C_1 \alpha(t,r) + C_2 \partial_t \alpha(t,r) + C_3 \partial_r \alpha(t,r) + C_4 \beta(t,r) + C_2 \partial_t \beta(t,r) + C_3 \partial_r \beta(t,r) = 0

where the coefficients C_i are all functions of t and r: C_i = C_i(t,r). I want to solve for the functions \alpha(t,r) \beta(t,r). I understand that this is one PDE for two unknown functions. I guess what I would like to do is solve for \alpha(t,r) in terms of \beta(t,r).

In addition, I would also like to solve it subject to the constraint

A_1 \alpha(t,r) + A_2 \partial_t \alpha(t,r) + A_3 \beta(t,r) + A_4 \partial_r \beta(t,r) = 0

where once again the coefficients A_i are all functions of t and r: A_i = A_i(t,r).

Any suggestions or names of methods used to solve equations or I guess really a system of equations when the constraint is considered would be helpful. Thanks in advanced!
 
Physics news on Phys.org
Have you considered using Laplace transforms?
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top