MHB How Do I Solve sec(θ-150°)=4 for θ Within Specific Degree Limits?

Needhelp2
Messages
17
Reaction score
0
After a long summer, I finding my new C3 homework a bit tricky, so any help would be great!

Here is the question: sec(θ-150 degrees)=4

(solving for theta is greater than or equal to -180, but less than or equal to 180)

So I know that sec is the reciprocal of cos so I changed the equation to cos(θ-150)=1/4
from there I did the inverse of cos to get θ-150 = 75.52, then I added 150 to get θ= 225.5
I then drew a cos graph and from this would assume that the answers are 134.5 and -134.5... but the answer booklet for my textbook says they are -134.5 and 74.5!

This is probably so simple but I have no clue what I'm doing wrong!
(Sweating)

 
Mathematics news on Phys.org
Needhelp said:
After a long summer, I finding my new C3 homework a bit tricky, so any help would be great!

Here is the question: sec(θ-150 degrees)=4

(solving for theta is greater than or equal to -180, but less than or equal to 180)

So I know that sec is the reciprocal of cos so I changed the equation to cos(θ-150)=1/4
from there I did the inverse of cos to get θ-150 = 75.52, then I added 150 to get θ= 225.5
I then drew a cos graph and from this would assume that the answers are 134.5 and -134.5... but the answer booklet for my textbook says they are -134.5 and 74.5!

This is probably so simple but I have no clue what I'm doing wrong!
(Sweating)


The angle theta - 150 is a reference angle. What does that mean for your solutions?

-Dan
 
topsquark said:
The angle theta - 150 is a reference angle. What does that mean for your solutions?

-Dan

What is a reference angle? Sorry for such a silly question!
 
Needhelp said:
After a long summer, I finding my new C3 homework a bit tricky, so any help would be great!

Here is the question: sec(θ-150 degrees)=4

(solving for theta is greater than or equal to -180, but less than or equal to 180)

So I know that sec is the reciprocal of cos so I changed the equation to cos(θ-150)=1/4
from there I did the inverse of cos to get θ-150 = 75.52, then I added 150 to get θ= 225.5
I then drew a cos graph and from this would assume that the answers are 134.5 and -134.5... but the answer booklet for my textbook says they are -134.5 and 74.5!

This is probably so simple but I have no clue what I'm doing wrong!
(Sweating)



It looks like you've got one answer but the second answer of 74.5 is confusing you. Where are $\cos(x)$ or $\sec(x)$ positive? In the first and fourth quadrants. Since your solution is positive then these need to be positive as well.

The way to set up your solution normally would be:

[math]\theta - 150 = 75.5[/math] and [math]\theta - 150 = -75.5[/math]

Due to restrictions though in directions we must rewrite the first angle as a negative angle so we get [math]\theta - 150 = -284.5[/math]

Make sense?
 
Not really...(Sweating) I don't understand where you got the value of -284 from, and it isn't within the degree specification? (at least if it goes from -180 up to 180)
Sorry for being so dim, could you possibly take it step by step to get the second value of 74.5 and explain why 134.5 isn't a valid answer?

Im just so confused :confused:

Thanks though for all your help!
 
Needhelp said:
Not really...(Sweating) I don't understand where you got the value of -284 from, and it isn't within the degree specification? (at least if it goes from -180 up to 180)
Sorry for being so dim, could you possibly take it step by step to get the second value of 74.5 and explain why 134.5 isn't a valid answer?

Im just so confused :confused:

Thanks though for all your help!

Sure :)

You're right that -284 isn't within the degree specification but that's not what $\theta$ is. We're looking at $\theta - 150$. $\theta$ must be from -180 to 180 but not $\theta - 150$. The -284.5 comes from the fact that if you look at the angle 75.5 degrees you can consider this as going counter-clockwise 75.5 degrees or go the other way a whole -284.5 degrees (clockwise because it's a negative angle) and you'll reach the same place. Notice that 284.5+75.5=360. Try drawing them both.

This problem has a restriction on $\theta$ which makes it tricky. You almost solved it yourself. Without the restrictions you could just solve:

(1) $\displaystyle \theta - 150 = 75.5$
(2) $\displaystyle \theta - 150 = -75.5$

as I said before. The reason you would choose (1) and (2) is because we need $\cos( \theta-150)$ to be positive and cosine is only positive in the first and fourth quadrant.

However due to the restrictions on $\theta$ if we solve both of these then the answer for (1) doesn't fall within the specified domain, so we must rewrite 75.5 as -284.5.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top