Since the hamiltonian consists of the states |0> , |1> and |2> , these will be a basis for it's non-zero eigenvalue eigenstates, because, if you acted with the hamiltonian to every other state |n>, you will get zero (assuming that |n>'s are a complete set of orthonormal states). So, try to act with this hamiltonian to a linear combination of the states |0> , |1> and |2> and then try to find the values of the coefficients of that superposition, that make this supreposition an eigenstate. This procedure will lead you to a homogeneus 3x3 system w.r.t. the coefficients, which, in order to have non-zero solutions, has to have a singular matrix (zero determinant). This condition will give you the eigenvalues and then, solvning the system for each eigenvalue, you will find the eigenstates.
If you have any problem with the above prescription, let me know so I can give you extra hints...