Dick said:
Wow. So many steps! But you dropped a 2 on the third line.
That 2 turned out to be important :)
<br />
\begin{array}{l}<br />
\left( {x + y} \right)y' = x - y,\,\,\,\,\,\,\,\,\,v = x + y,\,\,\,\,\,\,\,y = v - x,\,\,\,\,\,\,\,\,x - y = x - \left( {v - x} \right) = \,\,\,\, \Rightarrow \,\,\,\,x - y = x - v + x\,\,\,\, \Rightarrow \,\,\,\,x - y = 2x - v \\ <br />
\\ <br />
v\left( {v - x} \right)^\prime = 2x - y\,\,\,\, \Rightarrow \,\,\,\,v\frac{{d\left( {v - x} \right)}}{{dx}} = 2x - v\,\,\,\, \Rightarrow \,\,\,\,v\frac{{d\left( {v - x} \right)}}{{dx}} + v = 2x\,\,\,\, \Rightarrow \,\,\,\,v\left( {\frac{{d\left( {v - x} \right)}}{{dx}} + 1} \right) = 2x\,\,\,\, \Rightarrow \,\,\,\, \\ <br />
\\ <br />
v\left( {\frac{{dv - dx}}{{dx}} + 1} \right) = 2x\,\,\,\, \Rightarrow \,\,\,\,v\left( {\frac{{dv}}{{dx}} - \frac{{dx}}{{dx}} + 1} \right) = 2x\,\,\,\, \Rightarrow \,\,\,\,v\left( {\frac{{dv}}{{dx}} - 1 + 1} \right) = 2x\,\,\,\, \Rightarrow \,\,\,\, \\ <br />
\\ <br />
v\left( {\frac{{dv}}{{dx}}} \right) = 2x\,\,\,\, \Rightarrow \,\,\,\,v\,\,dv = 2x\,\,dx \\ <br />
\\ <br />
\int_{}^{} {v\,\,dv} = \int_{}^{} {2x\,\,dx} \\ <br />
\\ <br />
\frac{{v^2 }}{2} + C_1 = \frac{{2x^2 }}{2} + C_2 \\ <br />
\end{array}<br />
\
<br />
\begin{array}{l}<br />
\frac{{v^2 }}{2} = x^2 + C_2 - C_1 ,\,\,\,\,\,\,\,C_3 = C_2 - C_1 \\ <br />
\\ <br />
\frac{{v^2 }}{2} = x^2 + C_3 \,\,\,\, \Rightarrow \,\,\,\,\frac{{\left( {x + y} \right)^2 }}{2} - x^2 = C_3 \,\,\,\, \Rightarrow \,\,\,\,\frac{{x^2 + 2xy + y^2 }}{2} - x^2 = C_3 \,\,\,\, \Rightarrow \,\,\,\, \\ <br />
\\ <br />
x^2 + 2xy + y^2 - 2x^2 = 2C_3 \\ <br />
\\ <br />
- x^2 + 2xy + y^2 = 2C_3 ,\,\,\,\,\,\,\,\,\,\,\,\,\, - C = 2C_3 \, \\ <br />
\\ <br />
- x^2 + 2xy + y^2 = - C \\ <br />
\\ <br />
x^2 - 2xy - y^2 = C \\ <br />
\end{array}<br />
\
Same as the back of the book. Thanks!