Orion1
- 961
- 3
Planck energy:
E_P = m_P c^2 = \sqrt{\frac{\hbar c^5}{G}}
Gravitational radius:
r_G = \frac{r_s}{2} = \frac{G m_P}{c^2}
Gravitational radius is equivalent to Compton wavelength:
r_G = \overline{\lambda}_C
\frac{G m_P}{c^2} = \frac{\hbar}{m_P c}
Planck force is a constant in the Einstein field equation:
F_P = \frac{E_P}{r_G} = m_P c^2 \left( \frac{c^2}{G m_P} \right) = \frac{c^4}{G} = \frac{8 \pi T_{\mu \nu}}{G_{\mu\nu}}
The maximum ratio of energy per gravitational length:
\boxed{\frac{c^4}{G} = \frac{8 \pi T_{\mu \nu}}{G_{\mu\nu}}}
Are Planck scale dimensions the maximum limits in the Universe?
[/Color]
Reference:
http://en.wikipedia.org/wiki/Planck_force"
http://en.wikipedia.org/wiki/Planck_mass"
http://en.wikipedia.org/wiki/Planck_energy"
Last edited by a moderator: