noospace
- 69
- 0
I'm trying to evaluate the expectation of position and momentum of
\exp\left(\xi (\hat{a}^2 - \hat{a}^\dag^2)/2\right) e^{-|\alpha|^2} \sum_{n=0}^\infty \frac{\alpha^n}{\sqrt{n!}} |n\rangle}
where \hat{a},\hat{a}^\dag are the anihilation/creation operators respectively.
Recall \hat{x} = \sqrt{\hbar/(2m\omega)}(\hat{a}^\dag + \hat{a}).
The calculation of \langle \hat{x} \rangle and \langle \hat{p} \rangle are easy if one uses the Hadamard lemma
e^X Y e^{-X} = Y+ [X,Y] + (1/2)[X,[X,Y]] + \cdots.
I'm running into touble in the evaluation of \langle\hat{x}^2\rangle,\langle\hat{p}^2\rangle. In particular in the calculation of
\exp\left(\xi (\hat{a}^\dag^2-\hat{a}^2)/2\right)(\hat{a}^\dag + \hat{a})^2\exp\left(-\xi (\hat{a}^\dag^2-\hat{a}^2)/2\right).
I was able to show that
\exp\left(\xi (\hat{a}^\dag^2-\hat{a}^2)/2\right)(\hat{a}^\dag + \hat{a})^2\exp\left(-\xi (\hat{a}^\dag^2-\hat{a}^2)/2\right) = (\hat{a}^\dag + \hat{a})^2 + \xi([\hat{a}^2,\hat{a}^\dag^2]+[\hat{a}^\dag\hat{a},\hat{a}^\dag^2-\hat{a}^2]) + \frac{\xi}{2!}[(\hat{a}^\dag+\hat{a})^2,[\hat{a}^2,\hat{a}^\dag^2]+[\hat{a}^\dag\hat{a},\hat{a}^\dag^2-\hat{a}^2]]+\cdots
but I can't figure out how to simplify this.
\exp\left(\xi (\hat{a}^2 - \hat{a}^\dag^2)/2\right) e^{-|\alpha|^2} \sum_{n=0}^\infty \frac{\alpha^n}{\sqrt{n!}} |n\rangle}
where \hat{a},\hat{a}^\dag are the anihilation/creation operators respectively.
Recall \hat{x} = \sqrt{\hbar/(2m\omega)}(\hat{a}^\dag + \hat{a}).
The calculation of \langle \hat{x} \rangle and \langle \hat{p} \rangle are easy if one uses the Hadamard lemma
e^X Y e^{-X} = Y+ [X,Y] + (1/2)[X,[X,Y]] + \cdots.
I'm running into touble in the evaluation of \langle\hat{x}^2\rangle,\langle\hat{p}^2\rangle. In particular in the calculation of
\exp\left(\xi (\hat{a}^\dag^2-\hat{a}^2)/2\right)(\hat{a}^\dag + \hat{a})^2\exp\left(-\xi (\hat{a}^\dag^2-\hat{a}^2)/2\right).
I was able to show that
\exp\left(\xi (\hat{a}^\dag^2-\hat{a}^2)/2\right)(\hat{a}^\dag + \hat{a})^2\exp\left(-\xi (\hat{a}^\dag^2-\hat{a}^2)/2\right) = (\hat{a}^\dag + \hat{a})^2 + \xi([\hat{a}^2,\hat{a}^\dag^2]+[\hat{a}^\dag\hat{a},\hat{a}^\dag^2-\hat{a}^2]) + \frac{\xi}{2!}[(\hat{a}^\dag+\hat{a})^2,[\hat{a}^2,\hat{a}^\dag^2]+[\hat{a}^\dag\hat{a},\hat{a}^\dag^2-\hat{a}^2]]+\cdots
but I can't figure out how to simplify this.
Last edited: