How Do Two Particles Following Maxwell Velocity Distribution Combine?

  • Thread starter Thread starter E92M3
  • Start date Start date
AI Thread Summary
The discussion focuses on the derivation of the combined velocity distribution of two particles following the Maxwell velocity distribution. The combined distribution is expressed in terms of the reduced mass and the relative velocity. Participants are seeking clarification on the integration process that leads to the combined distribution, particularly the transformation of variables and the limits of integration. The key point of confusion lies in the integral involving the product of the individual distributions and the need for proper variable substitution. Understanding these derivations is essential for grasping how the combined distribution is formulated.
E92M3
Messages
64
Reaction score
0
If I have two particles that follows the maxwell velocity distribution:
\phi(v_i)dv_i=4 \pi v_i^2 \left ( \frac{m_iv_i}{2\pi kT} \right ) ^{3/2}e^{\frac{-m_iv_i^2}{2kT}}dv_i
Why is their combined distribution:
\phi(v)dv=4 \pi v^2 \left ( \frac{\mu v}{2\pi kT} \right ) ^{3/2}e^{\frac{-\mu v^2}{2kT}}dv
where mu is the reduced mass and v=v2-v1
I have these questions because I don't quite follow these derivations.
http://dissertations.ub.rug.nl/FILES/faculties/science/2007/a.matic/c2.pdf
http://www.astro.psu.edu/users/rbc/a534/lec11.pdf
Namely, I not sure why the following holds:
\int_0^\infty \int_0^\infty \phi(v_1) \phi(v_2) v_1 v_2 \sigma dv_1 dv_2 = 4\pi \left ( \frac{\mu v}{2\pi kT} \right ) ^{3/2} \int_0^\infty v^3 \sigma e^{\frac{-\mu v^2}{2kT}}dv
 
Last edited by a moderator:
Physics news on Phys.org
You have v=v1-v2. Let u=v1+v2. The new integration is straightforward as long as the integral limits are -∞ to ∞. You then need |v1v2| instead of v1v2 in the integrand. The u integration should leave you with what you want.
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top