cragar
- 2,546
- 3
<br />
sec(x) = \frac{2}{e^{ix}+e^{-ix}}<br />
then i multply bot top and bottom by e^{ix}
so i can do a u substitution
u=e^{ix} du=ie^{ix}
so then \int {\frac{2du}{(u^2+1)i}} <br /> =\frac {2arctan(u)}{i}}
so then i turn the arctan into a log
then i get ln|e^{ix}+i|-ln|e^{ix}-i| + c
then how do i get the real part out if this .
then i multply bot top and bottom by e^{ix}
so i can do a u substitution
u=e^{ix} du=ie^{ix}
so then \int {\frac{2du}{(u^2+1)i}} <br /> =\frac {2arctan(u)}{i}}
so then i turn the arctan into a log
then i get ln|e^{ix}+i|-ln|e^{ix}-i| + c
then how do i get the real part out if this .
Last edited: