Exulus
- 50
- 0
I really struggle with calculating errors :( I understand what i have to do, find the partial derivative of each variable and multiply it by the error, square it, add up all the others then square root the total. I just seem totally incapable of doing it :( The expression i have to find error on is:
E = m_{0}c^2 [\sqrt{1+(\frac{RqB}{m_{0}c\tan{\frac{\Theta}{2}}}) ^2} - 1]
Where R, B and theta all have errors associated with them! (to find the error on E)
I've been told its possible to break it down one bit at a time, so evalulating the RqB bit i get:
\sigma = \sqrt{ (B\Delta R)^2 + (R\Delta B)^2}
But no idea where to go next :( Any help much appreciated!
E = m_{0}c^2 [\sqrt{1+(\frac{RqB}{m_{0}c\tan{\frac{\Theta}{2}}}) ^2} - 1]
Where R, B and theta all have errors associated with them! (to find the error on E)
I've been told its possible to break it down one bit at a time, so evalulating the RqB bit i get:
\sigma = \sqrt{ (B\Delta R)^2 + (R\Delta B)^2}
But no idea where to go next :( Any help much appreciated!
Last edited: