How Do You Calculate Ray and Ellipsoid Intersections?

  • Thread starter Thread starter bobthebanana
  • Start date Start date
  • Tags Tags
    Ellipsoid Ray
bobthebanana
Messages
21
Reaction score
0
So I have an array p(t) = e + td, where e is the start position, t is some parameter, and d is the direction of the ray

For a sphere with center c and radius R, the vector form equation is (p-c).(p-c)-R^2=0

This can be algebraically manipulated into:

t = (-d.(e-c) +- sqrt((d.(e-c))^2 - (d.d)((e-c).(e-c)-R^2))) / (d.d)



How can I express t for ellipsoids? I know there's an xRadius, yRadius, and a zRadius instead of radius R
 
Mathematics news on Phys.org
The most direct way is to transform the coordinates so that the ellipsoid is centered at the origin and its three axes coincide with the coordinate axes. The equation for the ellipsoid is then (x/a)2+(y/b)2+(z/c)2=1. Then substitute the components of p(t) for x,y,and z to get the equation for t.
 
Wouldn't that make a great name for a band "Ray Ellipsoid and the intersections"?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top